Abstract
This study aimed to determine the effects of osmotic dehydration on the kinetics of hot air drying of apricot halves under conditions that were similar to the industrial ones. The osmotic process was performed in a sucrose solution at 40 and 60 °C and concentrations of 50% and 65%. As expected increased temperatures and concentrations of the solution resulted in increased water loss, solid gain and shrinkage. The kinetics of osmotic dehydration were well described by the Peleg model. The effective diffusivity of water 5.50–7.387 × 10−9 m2/s and solute 8.315 × 10−10–1.113 × 10−9 m2/s was calculated for osmotic dehydration. Hot air drying was carried out at 40, 50, and 60 °C with air flow velocities of 1.0 m/s and 1.5 m/s. The drying time shortened with higher temperature and air velocity. The calculated effective diffusion of water was from 3.002 × 10−10 m2/s to 1.970 × 10−9 m2/s. The activation energy was sensitive to selected air temperatures, so greater air velocity resulted in greater activation energy: 46.379–51.514 kJ/mol, and with the osmotic pretreatment, it decreased to 35.216–46.469 kJ/mol. Osmotic dehydration reduced the effective diffusivity of water during the hot air drying process. It also resulted in smaller shrinkage of apricot halves in the hot air drying process.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference58 articles.
1. The early performance and fruit properties of apricot cultivars grafted on Prunus spinosa L. interstock
2. Physical and Chemical Fruit Properties of Apricot Cultivars and Selections from Novi Sad within High-Density Growing System;Miodragović;J. Pomol.,2015
3. Economic aspects of dried fruit production by combined technology
4. Analysis of Economic Justification of Drying of Apricots by Combined Technology;Vukoje;J. Process. Energy Agric.,2010
5. New Apricot Cultivar—“Buda”;Keserović;J. Pomol.,2018
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献