Equilibrium and Kinetics of CO2 Adsorption by Coconut Shell Activated Carbon Impregnated with Sodium Hydroxide

Author:

Tangsathitkulchai Chaiyot,Naksusuk Suravit,Wongkoblap AtichatORCID,Phadungbut Poomiwat,Borisut PrapassornORCID

Abstract

The equilibrium and kinetics of CO2 adsorption at 273 K by coconut-shell activated carbon impregnated with sodium hydroxide (NaOH) was investigated. Based on nitrogen adsorption isotherms, porous properties of the tested activated carbons decreased with the increase of NaOH loading, with the decrease resulting primarily from the reduction of pore space available for nitrogen adsorption. Equilibrium isotherms of CO2 adsorption by activated carbons impregnated with NaOH at 273 K and the pressure up to 100 kPa displayed an initial part of Type I isotherm with most adsorption taking place in micropores in the range of 0.7–0.9 nm by pore-filling mechanisms. The amount of CO2 adsorbed increased with the increase of NaOH loading and passed through a maximum at the optimum NaOH loading of 180 mg/g. The CO2 isotherm data were best fitted with the three-parameter Sips equation, followed by Freundlich and Langmuir equations. The pore diffusion model, characterized by the effective pore diffusivity (De), could well describe the adsorption kinetics of CO2 in activated carbons impregnated with NaOH. The variation of De with the amount of CO2 adsorbed showed three consecutive regions, consisting of a rapid decrease of De for CO2 loading less than 40 mg/g, a relatively constant value of De for the CO2 loading of 40–80 mg/g and a slow decrease of De for the CO2 loading of 80–200 mg/g. The maximum De occurred at the optimum NaOH loading of 180 mg/g, in line with the equilibrium adsorption results. The values of De varied from 1.1 × 10−9 to 5.5 × 10−9 m2/s, which are about four orders of magnitude smaller than the molecular diffusion of CO2 in air. An empirical correlation was developed for predicting the effective pore diffusivity with the amount of CO2 adsorbed and NaOH loading.

Funder

Suranaree University of Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference45 articles.

1. IPCC Fifth Assessment Report: Climate Change 2014 (AR5), from IPCC Websitewww.ipcc.ch./report/ar5/syr

2. Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture

3. Fossil CO2 Emissions of All World Countries-2020 report, EUR 30358 EN;Crippa,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3