Affiliation:
1. Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
2. Watershed Research Center for Comprehensive Treatment of Water Environmental Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract
To identify the influences of anthropogenic activities on the composition, spatial distribution, sources, and transformation mechanism of sedimentary fulvic acid (FA) fractions from different reaches of an urban river were tracked via excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis and two-dimensional correlation spectroscopy (2D-COS). Sediment samples were collected from Baitapu River (BR) along gradients with human activities (e.g., rural, town, and urban sections) in Shenyang, northeast China, from which FA fractions were extracted and then determined via EEM fluorescence spectroscopy. According to optical indices, the autochthonous sources of sedimentary FA fractions in BR were more significant than the terrestrial sources. Among the sections, the contribution from autochthonous sources decreased in the following order: Rural > Urban > Town. Six components of sedimentary FA fractions were identified via EEM–PARAFAC: C1 comprised tryptophan-like (TRL) compounds; C2 was associated with microbial humic-like (MHL) compounds; C3, C4, and C5 were associated with FA-like (FAL) compounds; and C6 comprised humic acid-like (HAL) compounds. The proportion of sedimentary FA fractions decreased in the following order: MHL + FAL + HAL (humus, 77.37–88.90%) > TRL (protein, 11.10–22.63%) for the three sections, showing that humus dominated. The town section exhibited the highest sedimentary FA fractions (5328.87 ± 1315.82 Raman unit [R.U.]), followed by the urban (4146.49 ± 535.75 R.U.) and rural (2510.56 ± 611.00 R.U.) sections. Three pollution sources were determined via principal component analysis (i.e., the dominant industrial source, domestic wastewater, and agricultural effluent). Additionally, the results from 2D-COS revealed that sedimentary FA fractions tended to stabilize as the protein-like component was transformed into the HAL component. Furthermore, we used the structural equation model to validate the critical environmental variables affecting the FA fraction transformation. The results can elucidate the influences of human activities on the dynamics of sedimentary FA fractions in urban rivers.
Funder
National Key R&D Program of China
Natural Science Foundation of Fujian Province
Fujian Provincial Department of Science and Technology
Foreign Cooperation Project of Fujian Academy of Agricultural Sciences
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry