REV and Three-Dimensional Permeability Tensor of Fractured Rock Masses with Heterogeneous Aperture Distributions

Author:

Huang Na1,Han Shengqun1,Jiang Yujing2ORCID,Han Songcai3

Affiliation:

1. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Engineering, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 8528521, Japan

3. College of Energy, Chengdu University of Technology, Chengdu 610059, China

Abstract

This study performed a representative elementary volume (REV) and 3D equivalent continuum study of rock fractures based on fluid simulations of 3D discrete fracture networks (DFNs). A series of 3D DFNs with heterogeneous aperture distributions (the DFN-H model) and uniform apertures (the DFN-I model) were established, in which the fractures were oriented according to the geological field mapping of a high-level radioactive waste candidate site in China. The 3D DFNs of the different model sizes were extracted and rotated in a number of directions to check whether there was a tensor quality of the permeability at a certain scale. The results show that aperture heterogeneity increases the REV size and results in a necessarily larger model size to reach an equivalent continuum behavior, and this effect is more obvious when the fracture density is smaller. The shape of the 2D permeability contour is irregular, with some breaks when the model size is small. As the model size increases, its shape gradually tends to become smooth and approaches an ellipse. The shape of the permeability contours of the DFN-H model is slender compared to the DFN-I model, indicating a larger difference between the minimum and maximum values of the permeability. For the DFN-H model, there is no appropriate approximation for the equivalent permeability tensor over the studied model size range, whereas a good fit of the permeability ellipsoid is obtained for the DFN-I model, and the 3D directional permeability is calculated at this model scale. The corresponding magnitude and direction of the principal permeability are obtained, which can be viewed as the equivalent permeability tensor for the approximated continuum medium.

Funder

Research Fund for Young Expert of Taishan Scholars Project in Shandong Province

State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3