Combined Use of High-Resolution Numerical Schemes to Reduce Numerical Diffusion in Coupled Nonhydrostatic Hydrodynamic and Solute Transport Model

Author:

Cunha AugustoORCID,Fragoso CarlosORCID,Tavares MatheusORCID,Cavalcanti J.ORCID,Bonnet Marie-PauleORCID,Motta-Marques DavidORCID

Abstract

In three-dimensional simulations of free-surface flow where the vertical velocities are relevant, such as in lakes, estuaries, reservoirs, and coastal zones, a nonhydrostatic hydrodynamic approach may be necessary. Although the nonhydrostatic hydrodynamic approach improves the physical representation of pressure, acceleration and velocity fields, it is not free of numerical diffusion. This numerical issue stems from the numerical solution employed in the advection and diffusion terms of the Reynolds-averaged Navier–Stokes (RANS) and solute transport equations. The combined use of high-resolution schemes in coupled nonhydrostatic hydrodynamic and solute transport models is a promising alternative to minimize these numerical issues and determine the relationship between numerical diffusion in the two solutions. We evaluated the numerical diffusion in three numerical experiments, for different purposes: The first two experiments evaluated the potential for reducing numerical diffusion in a nonhydrostatic hydrodynamic solution, by applying a quadratic interpolator over a Bilinear, applied in the Eulerian–Lagrangian method (ELM) step-ii interpolation, and the capability of representing the propagation of complex waves. The third experiment evaluated the effect on numerical diffusion of using flux-limiter schemes over a first-order Upwind in solute transport solution, combined with the interpolation methods applied in a coupled hydrodynamic and solute transport model. The high-resolution methods were able to substantially reduce the numerical diffusion in a solute transport problem. This exercise showed that the numerical diffusion of a nonhydrostatic hydrodynamic solution has a major influence on the ability of the model to simulate stratified internal waves, indicating that high-resolution methods must be implemented in the numerical solution to properly simulate real situations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3