The Real-Time Monitoring of the Laser-Induced Functionalization of Transparent Conductive Oxide Films

Author:

Hosokai Takuya1ORCID,Nomoto Junichi2

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan

2. National Institute of Advanced Industrial Science and Technology (AIST), Advanced Manufacturing Research Institute, Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan

Abstract

Laser-induced functionalization using excimer laser irradiation has been widely applied to transparent conductive oxide films. However, exploring suitable irradiation conditions is time-consuming and cost-ineffective as there are numerous routine film fabrication and analytical processes. Thus, we herein explored a real-time monitoring technique of the laser-induced functionalization of transparent conductive oxide films. We developed two types of monitoring apparatus, electrical and optical, and applied them to magnetron-sputtered, Sn-doped In2O3 films grown on glass substrates and hydrogen-doped In2O3 films on glass or plastic substrates using a picosecond Nd:YAG pulsed laser. Both techniques could monitor the functionalization from a change in the properties of the films on glass substrates via laser irradiation, but electrical measurement was unsuitable for the plastic samples because of a laser-induced degradation of the underlying plastic substrate, which harmed proper electrical contact. Instead, we proposed that the optical properties in the near-infrared region are more suitable for monitoring. The changes in the optical properties were successfully detected visually in real-time by using an InGaAs near-infrared camera.

Funder

Japan Society for the Promotion of Science

AMADA Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3