MOF-Derived CoSe2@NiFeOOH Arrays for Efficient Oxygen Evolution Reaction

Author:

Tang Yulong12,Li Jiangning12,Lu Zhiyi23,Wang Yunan23,Tao Kai1,Lin Yichao23

Affiliation:

1. School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China

2. Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Water electrolysis is a compelling method for the production of environmentally friendly hydrogen, minimizing carbon emissions. The electrolysis of water heavily relies on an effective and steady oxygen evolution reaction (OER) taking place at the anode. Herein, we introduce a highly promising catalyst for OER called CoSe2@NiFeOOH arrays, which are supported on nickel foam. This catalyst, referred to as CoSe2@NiFeOOH/NF, is fabricated through a two-step process involving the selenidation of a Co-based porous metal organic framework and subsequent electrochemical deposition on nickel foam. The CoSe2@NiFeOOH/NF catalyst demonstrates outstanding activity for the OER in an alkaline electrolyte. It exhibits a low overpotential (η) of 254 mV at 100 mA cm−2, a small Tafel slope of 73 mV dec−1, and excellent high stability. The good performance of CoSe2@NiFeOOH/NF can be attributed to the combination of the high conductivity of the inner layer and the synergistic effect between CoSe2 and NiFeOOH. This study offers an effective method for the fabrication of highly efficient catalysts for an OER.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3