Carrier Modulation via Tunnel Oxide Passivating at Buried Perovskite Interface for Stable Carbon-Based Solar Cells

Author:

Xiao Yuqing12ORCID,Zhang Huijie2,Zhao Yue3,Liu Pei2,Kondamareddy Kiran Kumar4,Wang Changlei3

Affiliation:

1. School of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. Key Laboratory of Artificial Micro & Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China

3. Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

4. Department of Physics, School of Pure Sciences, College of Engineering Science and Technology, FIJI National University, Lautoka Campus, Suva 744101, Fiji

Abstract

Carbon-based perovskite solar cells (C-PSCs) have the impressive characteristics of good stability and potential commercialization. The insulating layers play crucial roles in charge modulation at the buried perovskite interface in mesoporous C-PSCs. In this work, the effects of three different tunnel oxide layers on the performance of air-processed C-PSCs are scrutinized to unveil the passivating quality. Devices with ZrO2-passivated TiO2 electron contacts exhibit higher power conversion efficiencies (PCEs) than their Al2O3 and SiO2 counterparts. The porous feature and robust chemical properties of ZrO2 ensure the high quality of the perovskite absorber, thus ensuring the high repeatability of our devices. An efficiency level of 14.96% puts our device among the state-of-the-art hole-conductor-free C-PSCs, and our unencapsulated device maintains 88.9% of its initial performance after 11,520 h (480 days) of ambient storage. These results demonstrate that the function of tunnel oxides at the perovskite/electron contact interface is important to manipulate the charge transfer dynamics that critically affect the performance and stability of C-PSCs.

Funder

Science and Technology Program of Guangzhou

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3