Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications

Author:

Thatyana Maxwell1,Dube Nondumiso P.1,Kemboi Douglas12ORCID,Manicum Amanda-Lee E.1ORCID,Mokgalaka-Fleischmann Ntebogeng S.3ORCID,Tembu Jacqueline V.1

Affiliation:

1. Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa

2. Department of Chemistry, University of Kabianga, Kericho 2030, Kenya

3. Mamelodi Campus, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa

Abstract

Nanoparticles and nanotechnology developments continue to advance the livelihood of humankind. However, health challenges due to microorganisms and cancerous cells continue to threaten many people’s lives globally. Therefore, new technological interventions are of great importance. The phytochemicals present in medicinal plants are suggested as biocompatible, cost-effective, and regenerative sources that can be utilized for the green synthesis of nanoparticles. Different plant extracts with various phytochemical constituents can form nanoparticles with specific shapes, sizes, and optical properties. This review focuses on advances in green nanotechnology and provides details on reliable synthetic routes toward medically and biocompatible relevant metallic nanoparticles. We cover a wide range of applications that use phytonanoparticles with an in-depth look at what makes these materials interesting. The study also provides details of the literature on the interventions made in phytonanotechnology for the production of plant-mediated synthesis and capped metallic nanoparticles and their applications in various industries. It was observed that a variety of plants have been well studied, and detailed findings have been reported; however, the study of Phyllanthus is still in its early stages, and more needs to be uncovered.

Funder

National Research Foundation of South Africa

Tshwane University of Technology Research and Innovation

University of Pretoria

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3