Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays

Author:

Rubtsov Sofia1,Musin Albina2ORCID,Danchuk Viktor1ORCID,Shatalov Mykola1,Prasad Neena1ORCID,Zinigrad Michael1,Yadgarov Lena1ORCID

Affiliation:

1. Department of Chemical Engineering, Biotechnology and Materials, Faculty of Engineering, Ariel University, Ariel 4076414, Israel

2. Physics Department, Faculty of Natural Sciences, Ariel University, Ariel 4076414, Israel

Abstract

The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a titanium oxide (TiO2) microdot array (MDA), which was deposited using the inkjet printing technique. The X-ray (XRD) analysis of MAPI (methyl ammonium lead iodide) perovskite films deposited on glass substrates with and without MDA revealed no destructive effect of MDA on the perovskite structure. Moreover, a 12% increase in the crystallite size of perovskite with MDA was registered. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques revealed the morphology of the TiO2_MDA and TiO2-AuNPs_MDA. The finite-difference time-domain (FDTD) simulation was employed to evaluate the absorption cross-sections and local field enhancement of AuNPs in the TiO2 and TiO2/MAPI surrounding media. Reflectance UV-Vis spectra of the samples comprising glass/TiO2 ETL/TiO2_MDA (ETL—an electron transport layer) with and without AuNPs in TiO2_MDA were studied, and the band gap (Eg) values of MAPI have been calculated using the Kubelka–Munk equation. The MDA introduction did not influence the band gap value, which remained at ~1.6 eV for all the samples. The photovoltaic performance of the fabricated PSC with and without MDA and the corresponding key parameters of the solar cells have also been studied and discussed in detail. The findings indicated a significant power conversion efficiency improvement of over 47% in the PSCs with the introduction of the TiO2-AuNPs_MDA on the ETL/MAPI interface compared to the reference device. Our study demonstrates the significant enhancement achieved in halide PSC by utilizing AuNPs within a TiO2_MDA. This approach holds great promise for advancing the efficiency and performance of photovoltaic devices.

Funder

Ministry of Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3