Carbon Nanowalls as Anode Materials with Improved Performance Using Carbon Nanofibers

Author:

Kim Kangmin1,Bon Chris Yeajoon2,Kim Junghyun3ORCID,Ko Jang Myoun4ORCID,Choi Wonseok1ORCID

Affiliation:

1. Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

2. Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea

3. Department of Advanced Materials Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

4. Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

Abstract

In this paper, a new synthesis of carbon nanofibers (CNFs)/carbon nanowalls (CNWs) was performed to improve the characteristics of anode materials of lithium-ion batteries by using the advantages offered by CNWs and CNFs. Among the carbon-based nanomaterials, CNWs provide low resistance and high specific surface area. CNFs have the advantage of being stretchable and durable. The CNWs were grown using a microwave plasma-enhanced chemical vapor deposition (PECVD) system with a mixture of methane (CH4) and hydrogen (H2) gases. Polyacrylonitrile (PAN) and N,N-Dimethyl Formamide (DMF) were stirred to prepare a solution and then nanofibers were fabricated using an electrospinning method. Heat treatment in air was then performed using a hot plate for stabilization. In addition, heat treatment was performed at 800 °C for 2 h using rapid thermal annealing (RTA) to produce CNFs. A field emission scanning electron microscope (FE-SEM) was used to confirm surface and cross-sectional images of the CNFs/CNWs anode materials. Raman spectroscopy was used to examine structural characteristics and defects. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and constant current charge/discharge tests were performed to analyze the electrical characteristics. The synthesized CNFs/CNWs anode material had a CV value in which oxidation and reduction reactions were easily performed, and a low Rct value of 93 Ω was confirmed.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3