Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms

Author:

Peshin Snehan,George Derosh,Shiri Roya,Kulinsky LawrenceORCID,Madou MarcORCID

Abstract

Compact disc (CD)-based centrifugal microfluidics is an increasingly popular choice for academic and commercial applications as it enables a portable platform for biological and chemical assays. By rationally designing microfluidic conduits and programming the disc’s rotational speeds and accelerations, one can reliably control propulsion, metering, and valving operations. Valves that either stop fluid flow or allow it to proceed are critical components of a CD platform. Among the valves on a CD, wax valves that liquify at elevated temperatures to open channels and that solidify at room temperature to close them have been previously implemented on CD platforms. However, typical wax valves on the CD fluidic platforms can be actuated only once (to open or to close) and require complex fabrication steps. Here, we present two new multiple-use wax valve designs, driven by capillary or magnetic forces. One wax valve design utilizes a combination of capillary-driven flow of molten wax and centrifugal force to toggle between open and closed configurations. The phase change of the wax is enabled by heat application (e.g., a 500-mW laser). The second wax valve design employs a magnet to move a molten ferroparticle-laden wax in and out of a channel to enable reversible operation. A multi-phase numerical simulation study of the capillary-driven wax valve was carried out and compared with experimental results. The capillary wax valve parameters including response time, angle made by the sidewall of the wax reservoir with the direction of a valve channel, wax solidification time, minimum spin rate of the CD for opening a valve, and the time for melting a wax plug are measured and analyzed theoretically. Additionally, the motion of the molten wax in a valve channel is compared to its theoretical capillary advance with respect to time and are found to be within 18.75% of the error margin.

Funder

Autonomous Medical Devices Incorporated

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3