A Portable Sign Language Collection and Translation Platform with Smart Watches Using a BLSTM-Based Multi-Feature Framework

Author:

Zhou ZhenxingORCID,Tam Vincent W. L.ORCID,Lam Edmund Y.ORCID

Abstract

Continuous sign language recognition (CSLR) using different types of sensors to precisely recognize sign language in real time is a very challenging but important research direction in sensor technology. Many previous methods are vision-based, with computationally intensive algorithms to process a large number of image/video frames possibly contaminated with noises, which can result in a large translation delay. On the other hand, gesture-based CSLR relying on hand movement data captured on wearable devices may require less computation resources and translation time. Thus, it is more efficient to provide instant translation during real-world communication. However, the insufficient amount of information provided by the wearable sensors often affect the overall performance of this system. To tackle this issue, we propose a bidirectional long short-term memory (BLSTM)-based multi-feature framework for conducting gesture-based CSLR precisely with two smart watches. In this framework, multiple sets of input features are extracted from the collected gesture data to provide a diverse spectrum of valuable information to the underlying BLSTM model for CSLR. To demonstrate the effectiveness of the proposed framework, we test it on an extremely challenging and radically new dataset of Hong Kong sign language (HKSL), in which hand movement data are collected from 6 individual signers for 50 different sentences. The experimental results reveal that the proposed framework attains a much lower word error rate compared with other existing machine learning or deep learning approaches for gesture-based CSLR. Based on this framework, we further propose a portable sign language collection and translation platform, which can simplify the procedure of collecting gesture-based sign language dataset and recognize sign language through smart watch data in real time, in order to break the communication barrier for the sign language users.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference49 articles.

1. Real-time American Sign Language recognition from video using hidden Markov models

2. Modality Combination Techniques for Continuous Sign Language Recognition;Forster,2013

3. A Novel Sign Language Recognition Framework Using Hierarchical Grassmann Covariance Matrix

4. Fully Convolutional Networks for Continuous Sign Language Recognition;Cheng;arXiv,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3