Author:
Feng Ziheng,Song Li,Duan Jianzhao,He Li,Zhang Yanyan,Wei Yongkang,Feng Wei
Abstract
Powdery mildew severely affects wheat growth and yield; therefore, its effective monitoring is essential for the prevention and control of the disease and global food security. In the present study, a spectroradiometer and thermal infrared cameras were used to obtain hyperspectral signature and thermal infrared images data, and thermal infrared temperature parameters (TP) and texture features (TF) were extracted from the thermal infrared images and RGB images of wheat with powdery mildew, during the wheat flowering and filling periods. Based on the ten vegetation indices from the hyperspectral data (VI), TF and TP were integrated, and partial least square regression, random forest regression (RFR), and support vector machine regression (SVR) algorithms were used to construct a prediction model for a wheat powdery mildew disease index. According to the results, the prediction accuracy of RFR was higher than in other models, under both single data source modeling and multi-source data modeling; among the three data sources, VI was the most suitable for powdery mildew monitoring, followed by TP, and finally TF. The RFR model had stable performance in multi-source data fusion modeling (VI&TP&TF), and had the optimal estimation performance with 0.872 and 0.862 of R2 for calibration and validation, respectively. The application of multi-source data collaborative modeling could improve the accuracy of remote sensing monitoring of wheat powdery mildew, and facilitate the achievement of high-precision remote sensing monitoring of crop disease status.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献