Modeling the Impact of Grain Size on Corrosion Behavior of Ni-Based Alloys in Molten Chloride Salt via Cellular Automata

Author:

Feng Jinghua12ORCID,Gao Jianxi2ORCID,Mao Li1ORCID,Bedell Ryan1ORCID,Liu Emily1ORCID

Affiliation:

1. Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12018, USA

2. Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12018, USA

Abstract

Molten chloride salts hold significant promise as both thermal transfer and storage media for next-generation concentrated solar power (CSP) systems. However, molten chlorides pose a considerable corrosion risk to structural materials, particularly Ni-based alloys. One approach to enhancing corrosion resistance is through the optimization of grain structure; however, it remains uncertain whether increasing or decreasing grain size enhances corrosion resistance. A cellular automata (CA) program was developed to evaluate the interplay between grain size and corrosion in Ni-based alloy. Our CA program tracks alloy composition, surface roughness, and thickness loss via a graphical user interface, displaying corrosion and diffusion status, and multiple user input cards for tuning the simulation. CA simulations of Inconel 625 indicate enhanced corrosion resistance with increased grain size, with passivating oxides offering limited protection. Additionally, the temporal evolution of alloy surface roughness demonstrates notable fluctuations, with abrupt increases attributed to corrosion along vertical grain boundaries and sudden decreases to grain detachment from the protective film.

Funder

the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Generation 3 Concentrated Solar Power (CSP) Systems

Nuclear Regulatory Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3