W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage

Author:

Yang Haitao12,Zhang Ningfei1,Wang Chan3,Hou Qingyu1ORCID

Affiliation:

1. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China

2. Nanjing Iron and Steel Co., Ltd., Nanjing 210035, China

3. Deyang Sanhuan Technology Co., Ltd., Deyang 618000, China

Abstract

To retard the mutual contact of W grains to inhibit their growth, in this study, CeO2·2H2O was first coated on the surface of pure W (undoped) particles by a weight percentage of 4% using a wet chemical method to prepare CeO2·2H2O-doped W-based (doped) powders, with W particles as the core and CeO2·2H2O as the shell (W–CeO2·2H2O core–shell structure), without hydrogen reduction treatment. The undoped and doped powders were subsequently sintered using a spark plasma sintering (SPS) apparatus to fabricate bulk materials. The macroscopic migration of the CeO2 shell in the core–shell W–CeO2 system via viscous flow during the initial sintering stage was studied through simulations and experiments. The results showed that a core–shell structure with W particles as the core and CeO2·2H2O as the shell was successfully prepared. The doped powder contained approximately 3.97% CeO2, consistent with the designed content of 4%. The shell materials migrated among the selected four sintered powders, filling the pores and contributing to the improvement in the relative density of the sintered bulk.

Funder

The Natural Science Research Project of Colleges and Universities in Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3