Analysis of the Effects of Water Temperature on Water-Assisted Laser Trepanning in Superalloys

Author:

Xia Kaibo12,Wang Liang3,Li Mingchao1,Yang Huayu1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

2. Suzhou Delphi Laser Co., Ltd., Suzhou 215026, China

3. Faculty of Mechanical and Materials Engineering, Huaiyin Institute of Technology, Huaian 223000, China

Abstract

The water-assisted laser trepanning method has been proven to improve the quality of laser drilling; however, the effect of water temperature on this process is currently unclear. In order to investigate the influence of water temperature on the quality of holes produced via water-assisted laser trepanning in superalloys, this study used the controlled variable method to investigate the effects of three water temperatures—low temperature (2 °C), normal temperature (20 °C), and high temperature (70 °C)—on the following factors: spatter, hole diameter, taper angle, hole sidewall morphology, and recast layer. The results show that the spatter around the hole reduced, the hole entrance/exit diameter increased, and the roughness of the hole’s sidewall decreased with an increase in single-pulse energy. However, the effect of single-pulse energy on the recast layer was not obvious. As the temperature of the water increased, the hole entrance/exit diameter increased, and the roughness of the hole’s sidewall decreased. When the single-pulse energy was 1.0–1.9 J, using a lower water temperature produced a hole with a smaller taper angle. Compared with a water temperature of 20 °C, the movement of the melt film on the hole’s sidewall accelerated when the water temperature was 70 °C; as a result, more molten material could be removed from the hole, resulting in a decrease in the thickness of the recast layer. However, when the water temperature was 2 °C, the heat-affected zone and the thickness of the recast layer decreased more significantly. The results of this study provide technical support for the optimization of water-assisted laser drilling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3