Finite Element Modeling and Experimental Verification of a New Aluminum Al-2%Cu-2%Mn Alloy Hot Cladding by Flat Rolling

Author:

Koshmin Alexander12ORCID,Zinoviev Alexander2,Cherkasov Stanislav2ORCID,Mahmoud Alhaj Ali Abdullah23,Tsydenov Kirill2ORCID,Churyumov Alexander4ORCID

Affiliation:

1. Scientific Activity Sector, Moscow Polytechnic University, Bolshaya Semyonovskaya 38, 107023 Moscow, Russia

2. Department of Metal Forming, National University of Science and Technology MISIS, Leninsky Prospekt 4, 119049 Moscow, Russia

3. Materials Science Department, Moscow Polytechnic University, Avtozavodskaya 16, 115280 Moscow, Russia

4. Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology MISIS, Leninsky Prospekt 4, 119049 Moscow, Russia

Abstract

The roll bonding of an experimental Al-2%Cu-2%Mn alloy with technically pure 1050A aluminum at true deformations of 0.26, 0.33 and 0.40 has been simulated using the QForm 10.3.0 FEM software. The flow stress of the Al-2%Cu-2%Mn alloy has been measured in temperature and strain rate ranges of 350–450 °C and 0.1–20 s−1, respectively. The simulation results suggest that the equivalent strain in the cladding layer is more intense than that in the base layer, reaching 1.0, 1.4 and 2.0 at strains of 0.26, 0.33 and 0.40, respectively. The latter fact favors a decrease in the difference between the flow stresses of the rolled sheet layer contact surfaces by an average of 25% at the highest strain. The experimental roll bonding has achieved good layer adhesion for all the test samples. The average peeling strength of the samples produced at strains of 0.26 and 0.33 proves to be 12.6 and 18.4 N/mm, respectively, and at a strain of 0.40, it has exceeded the flow stress of the 1050A alloy cladding layer. The change in the rolling force for different rolling routes has demonstrated the best fit with the experimental data.

Funder

Russian Science Foundation

Moscow Polytechnic University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3