Research on the Macro-Cell Corrosion Behavior of Alloyed Corrosion-Resistant Steel for a Transmission Line Steel Structure under a Chloride Corrosion Environment

Author:

Lyu Feng1,Zhou Xinyue1,Ding Zheng1,Zhang Sijie2,Zou Gongnian2,Wang Guowei2,Wang Xing2,Qiao Xinglong2,Xu Jiahao2,Song Dan2

Affiliation:

1. State Grid Wuxi Power Supply Company, Wuxi 214000, China

2. College of Materials Science and Engineering, Hohai University, Nanjing 211100, China

Abstract

“The article investigates the macro-cell corrosion behavior and corrosion resistance when the alloyed steel and the carbon steel are used together because the traditional carbon steel is difficult to meet the corrosion resistance and durability of the steel structure of the transmission line in the marine environment.” In this paper, a new type of Cr-alloyed corrosion-resistant steel (00Cr10MoV) is used to partially replace carbon structural steel in order to meet the actual needs of corrosion resistance and service life improvement of steel structures for offshore transmission lines. It is important to systematically study the macro-cell corrosion behavior of combinations of the same type of steel and dissimilar steel, induced by the chloride concentration difference in simulated concrete solutions, and employ electrochemical testing methods to scientifically evaluate the corrosion resistance of steel after macro-cell corrosion. The aim is to study and evaluate the macro-cell corrosion behavior of alloyed corrosion-resistant steel and to lay a foundation for its combined use with carbon steel in a chloride corrosion environment to improve the overall corrosion resistance and service life. Under the same concentration difference, the macro-cell corrosion of the alloyed steel combination is milder compared with the carbon steel combination. The corrosion current of the alloyed steel combination at 29 times the concentration difference is only 1/10 of the carbon steel combination. Moreover, at 29 times the concentration difference, the macro-cell corrosion potential of dissimilar steel is only 1/6 of the combined potential of carbon steel combination under the same concentration difference, and the corrosion current is only 1/10 of that of the carbon steel combination.

Funder

State Grid Jiangsu Electric Power Co., Ltd. Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3