Influence of Atomizing Gas Pressure on Microstructure and Properties of Nickel Silicide Intended for Additive Manufacturing

Author:

Ibrahim Mohammad1,Gobber Federico Simone2ORCID,Hulme Christopher3ORCID,Grasmo Geir1ORCID,Aune Ragnhild E.14

Affiliation:

1. Department of Engineering Sciences, University of Agder (UiA), 4630 Kristiansand, Norway

2. Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy

3. Department of Materials Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

4. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

Abstract

Nickel silicides are crucial in advanced technology applications ranging from semiconductor devices to high-temperature materials. Gas atomization is a process that involves the formation of fine liquid droplets and their rapid cooling and solidification to make powder particles. The final microstructure and the properties of the particles are highly sensitive to the gas atomization process parameters. In the present study, gas atomization of NiSi12-wt% was performed at three different pressures (35, 40, and 45 bars) to optimize the particle size distribution for additive manufacturing applications. A comprehensive range of characterization techniques, including scanning electron microscopy, X-ray diffraction, particle size distribution measurements, light optical microscopy, and density measurements, was used to evaluate the microstructural features, phase composition, and density of the produced NiSi12-wt% powders. Higher atomizing gas pressures resulted in a finer particle size distribution due to improved molten droplet breakup, increased satellite formation, and a well-suited particle size distribution for additive manufacturing applications.

Funder

Norges forskningsråd

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3