Variation in Flow Characteristics of Molten Baths at Different Blowing Stages in the Converter

Author:

Lv Ming1,Hao Yijie1ORCID,Hou Fuqing1,Chen Shuangping1,Guo Hongmin12,Zhang Zhaohui1

Affiliation:

1. School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Shaanxi Longmen Iron and Steel Co., Ltd., Hancheng 715405, China

Abstract

The metallurgical tasks at different stages of converter blowing are different. The process operation and physical properties of molten baths are also different. It is very important to determine the flow characteristics of molten baths at different blowing stages for optimizing process operation. In this paper, a three-dimensional, full-scale model of a 120 t top–bottom combined blowing converter is established. Based on the parameters of oxygen lance position, bath temperature, bottom blowing intensity, and bath physical properties at different blowing stages, the changes in bath flow field, turbulent kinetic energy, impact depth, impact area, and wall shear force with blowing process are studied. The results show that at the initial stage of blowing, the lance position is high, the impact depth of the molten bath is 0.23 m, the impact area is 5.06 m2, the dead zone area of the longitudinal section is 0.40 m2, and the high-speed zone area is 2.73 m2. As the blowing time increases, the lance position decreases, the impact depth of the molten bath increases, the impact area decreases, and the internal velocity of the molten bath increases. In the later stage of tuyere blowing, the lance level decreases to its lowest, the impact depth increases to 0.42 m, the impact area decreases to 2.83 m2, the dead zone area of longitudinal section decreases to 0.18 m2, and the high-speed area increases to 3.34 m2. The area with the highest wall shear stress is situated within the gas–slag–metal three-phase region, where the lining experiences the most significant erosion. The fluctuation in the slag–metal interface is small, and the wall shear force is 2.80 Pa at the initial stage of blowing. From the early to late stages of blowing, the lance position decreases, the fluctuation range of the slag–metal interface increases, and the erosion of the furnace lining increases. In the later stage of blowing, the maximum wall shear force is 3.81 Pa.

Funder

National Natural Science Foundation of China

Department of Education Service Local Special Plan Project of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3