Effect of Annealing Temperature on Microstructure and Magnetocaloric Properties of Gd-Based Metallic Microfibers

Author:

Liu Jingshun1ORCID,Yu Shiyang1,Zhang Mingwei1,Li Ze1,Cui Yaqiang1

Affiliation:

1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

In this paper, vacuum annealing has been adopted to introduce atomic cluster micro-regions inside Gd-based metallic microfibers to further explore the effect of the structural changes on the magnetocaloric properties and the mechanism which is systematically expressed. The experimental results indicate that the as-prepared Gd-based metallic microfibers have favorable amorphous formation ability and thermal stability. After annealing @ 380 °C, the maximum magnetic entropy change −ΔSmmax, refrigerating capacity (RC), and relative cooling power (RCP) values of the Gd-based metallic microfibers are 7.20 J/kg·K, 459.4 J/kg, and 588.7 J/kg, respectively. Combined with the transmission electron microscopy analysis results, the internal organizational order of the annealed microfibers is significantly altered, and the atomic clusters formed in localized regions, which reduce the magnetocrystalline anisotropy of the microfibers. While under the uni-action of an external magnetic field, the magnetic moment rotation state and magnetic domain structure distribution of the micro-region atoms will be changed obviously, thereby changing the general magnetic properties and magnetocaloric properties of the metallic microfibers. The above research results can promote the engineering application of Gd-based metallic microfibers in the field of magnetic refrigeration.

Funder

National Natural Science Foundation of China

Key Project of the Natural Science Foundation of Inner Mongolia Autonomous Region

Young Leading Talent of “Grassland Talents” Project of Inner Mongolia Autonomous Region

Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region

Inner Mongolia University of Technology Key Discipline Team Project of Materials Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3