Affiliation:
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2. Guizhou Provincial Key Laboratory of Metallurgical Engineering and Process Energy Saving, Guiyang 550025, China
3. Shougang Shuicheng Steel (Group) Co., Ltd., Liupanshui 553000, China
Abstract
In this study, SEM, AFM, TEM, XPS, and electrochemical tests are used to study the passivation behavior of chromium alloyed high-strength rebar in simulated concrete pore (SCP) solutions with different pH values. The results show that after passivation in SCP solution with different pH values, the passivating film on the surface of the chromium alloyed rebar primarily consists of a layer of nanoscale oxide particles, which makes the passive film exhibit a p-n type semi-conductor, and the passive film presents a rhombohedral crystal structure. As the pH value of the SCP solution decreases, the nanoscale oxide particles on the surface of the rebar become denser, which leads to a reduction in the carrier density (Nq and Na) of the passive film and an increase in film resistance (R2) and charge transfer resistance (R3), thus increasing the corrosion resistance of the passive film. The passive film on the surface of the chromium alloyed high-strength rebar predominantly exhibits a three-layer structure, the outer passive film layer is composed of Fe oxides, the stable layer of the passive film is composed of Fe oxides and Cr oxides, and the growth layer of inner passive film is composed of Cr oxides. Compared with passivation 10 d in SCP solutions with pH 13.5 and pH 12.5, the passive film on the surface of the rebar has good stability at pH 10.5, which indicates that the addition of Cr is beneficial to promote the corrosion resistance of the rebar.
Funder
National Natural Science Foundation of China
Guizhou Provincial Science and Technology Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献