From Bibliometric Analysis to Experimental Validation: Bibliometric and Literature Review of Four Cementing Agents in Soil Stabilization with Experimental Focus on Xanthan Gum

Author:

Baldovino Jair de Jesús Arrieta1ORCID,Palma Calabokis Oriana2ORCID,Saba Manuel1ORCID

Affiliation:

1. Civil Engineering Program, Universidad de Cartagena, Cartagena de Indias 130015, Colombia

2. Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 110231, Colombia

Abstract

This article focuses on the search for efficient solutions to enhance the mechanical strength of geomaterials, especially soils, with crucial applications in civil engineering. Four promising materials are explored as soil improvement agents: natural latex (rubber trees), lignosulfonate (paper industry byproduct), xanthan gum (bacterial fermentation), and eggshell lime. While other sustainable options exist, these four were chosen for their distinct characteristics and potential for further study. Natural latex, derived from rubber trees, demonstrates exceptional potential for strengthening the mechanical resistance of soils, offering a path to effective stabilization without compromising environmental sustainability. Lignosulfonate, a paper industry byproduct, emerges as an alternative that can significantly enhance the load-bearing capacity of soils, boosting its applicability in civil engineering projects. Xanthan gum, produced through bacterial fermentation, possesses unique properties that increase soil cohesion and strength, making it a valuable option for geotechnical applications. Finally, despite potential challenges, eggshell lime shows promising potential in enhancing the mechanical resistance of soils. This study highlights the importance of evaluating and comparing these agents in terms of their effectiveness in improving the mechanical strength of soils in civil engineering applications. In the literature review, the impact of stabilizer addition (%) was examined for the four cementing agents studied, along with its influence on key soil properties like optimum moisture content (OMC, %), maximum dry density (MDD, gm/cc), California bearing ratio (CBR, %), uniaxial compressive strength (UCS) at 28 days (MPa), and the change in UCS (ΔUCS, %) among other physicochemical parameters. Appropriate selection of these materials can lead to developing more robust and sustainable geomaterials, promoting significant advancements in geotechnical engineering and civil construction practices. To evaluate their effectiveness, the efficiency of one of them was assessed experimentally. Xanthan gum (XG) was selected to biopolymerize clay soil. Specimens were prepared for strength and stiffness tests, including unconfined compression, scanning electron microscopy (SEM), and ultrasonic wave analysis. The impact of stabilizer concentration was examined (e.g., 1%, 3%, 5% xanthan gum) to assess how dosage affects the soil–stabilizer mixture. The results showed that the rubber increases the unconfined compression and stiffness of the soil, controlled by the XG’s porosity/volumetric quantity ratio. The research demonstrates the potential of XG, but a broader analysis of all four materials with the outlined testing methods paves the way for future advancements in geotechnical engineering.

Funder

Fundación Universitaria Los Libertadores

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3