Abstract
As anion-exchange materials, layered double hydroxides (LDHs) have attracted increasing attention in the fields of selective adsorption and separation, controlled drug release, and environmental remediation. The metal cation composition of the laminate is the essential factor that determines the anion-exchange performance of LDHs. Herein, we review the regulating effects of the metal cation composition on the anion-exchange properties and LDH structure. Specifically, the internal factors affecting the anion-exchange performance of LDHs were analyzed and summarized. These include the intercalation driving force, interlayer domain environment, and LDH morphology, which significantly affect the anion selectivity, anion-exchange capacity, and anion arrangement. By changing the species, valence state, size, and mole ratio of the metal cations, the structural characteristics, charge density, and interlayer spacing of LDHs can be adjusted, which affect the anion-exchange performance of LDHs. The present challenges and future prospects of LDHs are also discussed. To the best of our knowledge, this is the first review to summarize the essential relationship between the metal ion composition and anion-exchange performance of laminates, providing important insights for regulating the anion-exchange performance of LDHs.
Funder
National Natural Science Foundation of China
Guangxi Key Laboratory of New Energy and Building Energy Saving Foundation
Guangxi Natural Science Foundation
Scientific Research and Technology Development Project of Fang Cheng Gang
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献