Predicting the Engineering Properties of Rocks from Textural Characteristics Using Some Soft Computing Approaches

Author:

Fereidooni Davood,Sousa LuísORCID

Abstract

Rock is used as a foundation and building material in many engineering projects and it is important to determine/predict its engineering properties before project construction. Petrographic and textural characteristics are useful parameters for predicting engineering properties of rocks in such applications. In this research, fifteen rock samples were taken and their engineering characteristics, namely dry and saturated unit weights, porosity, water absorption, slake durability index (SDI), Schmidt rebound hardness (SRH), ultrasonic P-wave velocity (UPV), and uniaxial compressive strength (UCS), were measured in the laboratory. Petrographic and textural characteristics of the rocks, determined from thin section and X-ray diffraction investigations, led to the evaluation of the texture coefficient (TC). Based on simple regression analysis (SRA), the TC values have direct relationships with density, SDI, SRH, UPV, and UCS, and inverse relationships with porosity and water absorption. Experimental models were developed using multiple regression analysis (MRA) and artificial neural network (ANN) to predict Id2, SRH, UPV, and UCS of the tested rocks from the values of TC. Some statistical parameters including Pearson regression coefficient (R), coefficient values account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE), and performance index (PI) were calculated to assess the performances of the MRA and ANN models. The correlations between experimental and calculated values of Id2, SRH, UPV, and UCS indicated that predicted values of the ANN models are more valid than the MRA. Additionally, the residual error of the ANN models varies less than the MRA. Finally, it has been concluded that the SRA, MRA, and ANN methods can successfully predict the rock engineering properties from the TC.

Funder

I&D unit Geosciences Center

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3