Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries

Author:

Yang Chenchen,Jiang Yan,Cheng Na,Zhao Jianwei,Chen Feng

Abstract

Silicon is considered as one of the ideal anode materials for the new generation of lithium-ion batteries due to its extremely high theoretical specific capacity. Nevertheless, in the actual charging and discharging process, the Si electrode will lose its electrochemical performance due to the huge volume change of Si nanoparticles resulting in detachment from the surface of the fluid collector. The polymer binder can bond the Si nanoparticles together in a three-dimensional cross-linking network, which can thus effectively prevent the Si nanoparticles from falling off the surface of the fluid collector due to the drastic change of volume during the charging and discharging process. Therefore, this study developed a new polymer binder based on electrostatic interaction with hyperbranched polyethylenimine (HPEI) as the main body and water-soluble carboxylated polyethylene glycol (CPEG) as the cross-linker, where the degree of cross-linking can be easily optimized by adjusting the pH value. The results demonstrate that, when the density of positive and negative charges in the binder is relatively balanced at pH 7, the stability of the battery’s charge–discharge cycle is significantly improved. After 200 cycles of constant current charge–discharge test, the specific capacity retention rate is 63.3%.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Prospects for reducing the processing cost of lithium ion batteries;J. Power Sources,2015

2. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries;Int. J. Energy Res.,2018

3. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges;Chem.-Eur. J.,2021

4. Integrated Lab-On-A-Chip Devices: Fabrication Methodologies, Transduction System for Sensing Purposes;J. Pharmaceut. Biomed.,2022

5. Electrode Materials for Lithium-ion Batteries;Mater. Sci. Energy Technol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3