Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property

Author:

Wu Xiaobin123ORCID,Zheng Liangliang123ORCID,Liu Chunyu123,Gao Tan123ORCID,Zhang Ziyu123ORCID,Yang Biao123

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Space-Based Dynamic & Rapid Optical Imaging Technology, Chinese Academy of Sciences, Changchun 130033, China

Abstract

When a remote sensing camera work in push-broom mode, the obtained image usually contains significant stripe noise and random noise due to differences in detector response and environmental factors. Traditional approaches typically treat them as two independent problems and process the image sequentially, which not only increases the risk of information loss and structural damage, but also faces the situation of noise mutual influence. To overcome the drawbacks of traditional methods, this paper leverages the double low-rank characteristics in the underlying prior of degraded images and presents a novel approach for addressing both destriping and denoising tasks simultaneously. We utilize the commonality that both can be treated as inverse problems and place them in the same optimization framework, while designing an alternating direction method of multipliers (ADMM) strategy for solving them, achieving the synchronous removal of both stripe noise and random noise. Compared with traditional approaches, synchronous denoising technology can more accurately evaluate the distribution characteristics of noise, better utilize the original information of the image, and achieve better destriping and denoising results. To assess the efficacy of the proposed algorithm, extensive simulations and experiments were conducted in this paper. The results show that compared with state-of-the-art algorithms, the proposed method can more effectively suppress random noise, achieve better synchronous denoising results, and it exhibits a stronger robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3