Water Storage Variations Recovered from Global Navigation Satellite System Network Using Spatial Constraints: A Case Study of the Contiguous United States

Author:

Yin Peng1,Mu Dapeng1ORCID,Xu Tianhe1ORCID

Affiliation:

1. Institute of Space Sciences, Shandong University, Weihai 264209, China

Abstract

Global Navigation Satellite System (GNSS) vertical displacements are widely used to infer terrestrial water storage (TWS) variations. The traditional Laplacian inversion requires dedicated efforts to determine the optimal parameters, which has an important effect on the spatial patterns. In this study, we develop a new GNSS inversion method with flexible spatial constraints. One major merit is that the new method only requires loose boundary conditions rather than optimal parameters. A closed-loop simulation shows that the inversion using spatial constraints is improved by 7–21% compared with the Laplacian constraints. We apply this method to 18 watersheds across the Contiguous United States (CONUS) to infer daily TWS variations from January 2018 to August 2022. The results show that the amplitudes of monthly TWS time series from the spatial and Laplacian constraints are comparable to the Gravity Recovery and Climate Experiment (GRACE) Follow-On (GFO) in 16 watersheds. Furthermore, the standard deviation between the spatial constraints and GFO is at the same level as that between the Laplacian constraints and GFO. We also extract the daily TWS variations caused by heavy precipitation events in California. Our results demonstrate that spatial constraint inversion supplements the existing constraint strategies of GNSS inversion in hydrogeodesy; therefore, spatial constraint inversion can be an alternative tool for GNSS inversion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3