Optimizing Back-Propagation Neural Network to Retrieve Sea Surface Temperature Based on Improved Sparrow Search Algorithm

Author:

Ji Changming1,Ding Haiyong1

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Sea surface temperature (SST) constitutes a pivotal physical parameter in the investigation of atmospheric, oceanic, and air–sea exchange processes. The retrieval of SST through satellite passive microwave (PMW) technology effectively mitigates the interference posed by cloud cover, addressing a longstanding challenge. Nevertheless, conventional functional representations often fall short in capturing the intricate interplay of factors influencing SST. Leveraging neural networks (NNs), known for their adeptness in tackling nonlinear and intricate problems, holds great promise in SST retrieval. Nonetheless, NNs exhibit a high sensitivity to initial weights and thresholds, rendering them susceptible to local optimization issues. In this study, we present a novel machine learning (ML) approach for SST retrieval using PMW measurements, drawing from the Sparrow Search Algorithm (SSA) and Back-Propagation neural network (BPNN) methodologies. The core premise involves the optimization of the BP neural network’s initial weights and thresholds through an enhanced SSA algorithm employing various optimization strategies. This optimization aims to provide superior parameters for the training of the BP neural network. Employing AMSR2 brightness temperature data, sea surface wind speed data, and buoy SST measurements, we construct the ISSA-BP model for sea surface temperature retrieval. The validation of the ISSA-BP model against the test data is conducted and compared against the multiple linear regression (MLR) model, an unoptimized BP model, and an unimproved SSA-BP model. The results manifest an impressive R-squared (R2) value of 0.9918 and a root-mean-square error (RMSE) of 0.8268 °C for the ISSA-BP model, attesting to its superior accuracy. Furthermore, the ISSA-BP model was applied to retrieve global sea surface temperatures on 15 July 2022, yielding an R2 of 0.9926 and an RMSE of 0.7673 °C for the OISST product on the same day, underscoring its excellent concordance. The results indicate that SST can be efficiently and accurately retrieved using the model proposed in this paper, based on satellite PMW measurements. This finding underscores the potential of employing machine learning algorithms for SST retrieval and offers a valuable reference for future studies focusing on the retrieval of other sea surface parameters.

Funder

National Key Research and Development Program

Graduate Practice Innovation Program of the Jiangsu Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review;Kawai;J. Oceanogr.,2007

2. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research;Chelton;Bull. Am. Meteorol. Soc.,2005

3. A call for new approaches to quantifying biases in observations of sea surface temperature;Kent;Bull. Am. Meteorol. Soc.,2017

4. Validation and inter-comparison of multi-satellite merged sea surface temperature products in the South China Sea and its adjacent waters;Hu;J. Remote Sens.,2015

5. Statistical retrieval algorithms of the sea surface temperature (SST) and wind speed (SSW) for FY-3B Microwave Radiometer Imager (MWRI);Sun;J. Remote Sens.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3