Antenna Pattern Calibration Method for Phased Array of High-Frequency Surface Wave Radar Based on First-Order Sea Clutter

Author:

Li Hongbo1ORCID,Liu Aijun2,Yang Qiang1ORCID,Yu Changjun2,Lyv Zhe2

Affiliation:

1. School of Information and Electrical, Harbin Institute of Technology, Harbin 150000, China

2. School of Information and Electrical, Harbin Institute of Technology (Weihai), Weihai 264200, China

Abstract

The problem of accurate source localization has been an area of focus in high-frequency surface wave radar (HFSWR) applications. However, antenna pattern distortion (APD) decreases the direction-of-arrival (DOA) estimation performance of the multiple signal classification (MUSIC) algorithm. Up to now, limited studies have been conducted on the calibration of antenna pattern distortion for phased arrays in HFSWR. In this paper, we first analyze the effect of APD on the performance of the MUSIC algorithm through estimation of accuracy and angular resolution. We demonstrate that using the actual pattern (or say APD) can improve DOA estimation performance. Based on this proposition, we propose a novel iterative calibration method that employs the first-order sea clutter data and can jointly estimate DOA and APD in an iterative way. To obtain available calibration points, we introduce the extraction methods of the first-order sea clutter spectrum and single-DOA spectrum points. Meanwhile, in each iteration, the Beamspace MUSIC algorithm and artificial hummingbird algorithm (AHA) are utilized to estimate the DOA and APD, respectively. Numerical results reveal a good coincidence between the actual pattern and the estimated APD. We also apply this method to process the experimental data of HFSWR. We obtain the APD vector of the real phased array and improve the direction-finding performance of several real ship targets using this vector. Both numerical and experimental results prove the correctness of our proposed calibration method.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3