A Simulation Framework of Unmanned Aerial Vehicles Route Planning Design and Validation for Landslide Monitoring

Author:

Xie Dongmei1ORCID,Hu Ruifeng1,Wang Chisheng1ORCID,Zhu Chuanhua1ORCID,Xu Hui23,Li Qipei1

Affiliation:

1. Ministry of Natural Resources (MNR) Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics, School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China

2. School of Fine Arts and Design, Shenzhen University, Shenzhen 518060, China

3. State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 510640, China

Abstract

Unmanned aerial vehicles (UAVs) have emerged as a highly efficient means of monitoring landslide-prone regions, given the growing concern for urban safety and the increasing occurrence of landslides. Designing optimal UAV flight routes is crucial for effective landslide monitoring. However, in real-world scenarios, the testing and validating of flight path planning algorithms incur high cost and safety concerns, making overall flight operations challenging. Therefore, this paper proposes the use of the Unreal Engine simulation framework to design UAV flight path planning specifically for landslide monitoring. It aims to validate the authenticity of the simulated flight paths and the correctness of the algorithms. Under the proposed simulation framework, we then test a novel flight path planning algorithm. The simulation results demonstrate that the model reconstruction obtained using the novel flight path algorithm exhibits more detailed textures, with a 3D model simulation accuracy ranging from 10 to 14 cm. Among them, the RMSE value of the novel flight route algorithm falls within the range of 10 to 11 cm, exhibiting a 2 to 3 cm improvement in accuracy compared to the traditional flight path algorithm. Additionally, it effectively reduces the flight duration by 9.3% under the same flight path compared to conventional methods. The results confirm that the simulation framework developed in this paper meets the requirements for landslide damage monitoring and validates the feasibility and correctness of the UAV flight path planning algorithm.

Funder

Chang’an University

Shenzhen Scientific Research and the Development Funding Programmes

Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy

National Natural Science Foundation of China

Open Research Fund of State Key Laboratory of Subtropical Building and Urban Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3