Combining RadCalNet Sites for Radiometric Cross Calibration of Landsat 9 and Landsat 8 Operational Land Imagers (OLIs)

Author:

Voskanian Norvik1,Thome Kurtis2,Wenny Brian N.1ORCID,Tahersima Mohammad H.1,Yarahmadi Mehran1

Affiliation:

1. Science System & Applications, Inc., 10210 Greenbelt Rd., Suite 600, Lanham, MD 20706, USA

2. NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771, USA

Abstract

Combining images from multiple Earth Observing (EO) satellites increases the temporal resolution of the data, overcoming the limitations imposed by low revisit time and cloud coverage. However, this requires an intercalibration process to ensure that there is no radiometric difference in top-of-atmosphere (TOA) observations or to quantify any offset in the respective instruments. In addition, combining vicarious calibration processes to the intercalibration of instruments can provide a useful mechanism to validate and compare data from multiple sensors. The Radiometric Calibration Network (RadCalNet) provides automated surface and top-of-atmosphere reflectance data from multiple participating ground sites that can be used for instrument vicarious calibration. We present a comparative analysis of the Landsat 8 and Landsat 9 Operational Land Imagers (OLI) sensors and validate the data by comparing them to measurements from RadCalNet sites as a quantitative intercalibration approach. RadCalNet serves as a common reference for instrument radiometric calibration, providing SI-traceable TOA reflectance with its associated absolute uncertainties. This paper discusses the method of combining data from multiple sites and calculating the weighted average by comparing the TOA reflectance of the instruments and their associated uncertainties. The presented process provides a SI-traceable intercalibration methodology and quantifies the offset and uncertainty in the Landsat 8 and 9 OLI instruments, demonstrating that the two instruments are in good agreement with each other and the data can be reliably cross-correlated and used by the scientific community.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3