Assessment of the Impact of Surface Water Content for Temperate Forests in SAR Data at C-Band

Author:

Cagnina Costanza12ORCID,Marino Armando1,Silva-Perez Cristian1ORCID,Ruiz-Ramos Javier3ORCID,Suarez Juan24

Affiliation:

1. Biological and Environmental Sciences, The University of Stirling, Stirling FK9 4LA, UK

2. Geography Department, Swansea University, Singleton Park, Swansea SA2 8PP, UK

3. Permian Global Research Ltd., London WC2R 0BU, UK

4. Forest Research, Agency of the British Forestry Commission, Roslin, Midlothian, Edinburgh EH25 9SY, UK

Abstract

This study addresses the escalating challenges posed by forest drought and wildfires, emphasizing the critical need to monitor forest conditions to mitigate associated risks. While traditional optical sensors have proven valuable for vegetation surface water (VSW) assessment, their limitations in regions with persistent cloud cover prompt an exploration of the alternatives. The study advocates the efficacy of Synthetic Aperture Radar (SAR) systems, known for their cloud-penetrating capabilities and sensitivity to changes in dielectric properties. Leveraging Sentinel-1 C-band dual polarization SAR data, the research investigates the impact of Vegetation Surface Water (VSW) on backscatter coefficients in a temperate coniferous forest through the application of generalized linear models. Despite the challenges posed by precipitation and canopy characteristics, the study unveils detectable modulation in backscatter, particularly in VH polarization, indicating the potential of SAR-based methods in forest monitoring. The occurrence of rain on the day of Sentinel-1 image acquisition, and therefore the presence of VSW, triggers an increase of 0.35 dB in VV backscatter, and an increase of 0.45 dB in VH backscatter. The findings underscore the importance of considering surface water content in radar backscatter analyses for accurate biomass estimations and change detection, suggesting avenues for future research and potential correction mechanisms.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3