Dynamic Process Behavior in Laser Chemical Micro Machining of Metals

Author:

Mehrafsun Salar,Messaoudi HamzaORCID

Abstract

Laser chemical machining (LCM) is a non-conventional processing method that enables a smooth and precise micro structuring of metallic surfaces. However, a high-quality removal is limited to a laser power window of some 100 mW. This is due to the high sensibility to removal disturbances, such as the deposition of metallic salts and oxides. In this work, the dynamic process behavior around the transition from a disturbance-free to a disturbed removal is investigated for the laser chemical machining of titanium (3.7024) and stainless steel (AISI 304) in different phosphoric acid solutions. Therefore, the removal cavities are recorded using confocal scanning microscopy and characterized regarding width, depth and quality in dependence of the laser power, feed velocity and electrolyte concentration. While the removal characteristics within the disturbance-free regime are found to be material-independent, the disturbed regime is strongly dependent on the tendency of the material to gas bubble adherence. Additional CCD records of the interaction zone reveal that the transition to the disturbed regime is accompanied by significant light reflections and thereby indicate the influence of adhering gas bubbles on disturbing the removal process. Moreover, typical removal disturbances are presented and discussed with regard to the responsible mechanisms for their occurrence.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3