Impact of Treadmill Interval Running on the Appearance of Zinc Finger Protein FHL2 in Bone Marrow Cells in a Rat Model: A Pilot Study

Author:

Germain Alexandre,Bourzac CelineORCID,Pichon ChantalORCID,Portier HuguesORCID,Pallu Stéphane,Germain Philippe

Abstract

Although the benefits of physical exercise to preserve bone quality are now widely recognized, the intimate mechanisms leading to the underlying cell responses still require further investigations. Interval training running, for instance, appears as a generator of impacts on the skeleton, and particularly on the progenitor cells located in the bone marrow. Therefore, if this kind of stimulus initiates bone cell proliferation and differentiation, the activation of a devoted signaling pathway by mechano-transduction seems likely. This study aimed at investigating the effects of an interval running program on the appearance of the zinc finger protein FHL2 in bone cells and their anatomical location. Twelve 5-week-old male Wistar rats were randomly allocated to one of the following groups (n = 6 per group): sedentary control (SED) or high-intensity interval running (EX, 8 consecutive weeks). FHL2 identification in bone cells was performed by immuno-histochemistry on serial sections of radii. We hypothesized that impacts generated by running could activate, in vivo, a specific signaling pathway, through an integrin-mediated mechano-transductive process, leading to the synthesis of FHL2 in bone marrow cells. Our data demonstrated the systematic appearance of FHL2 (% labeled cells: 7.5%, p < 0.001) in bone marrow obtained from EX rats, whereas no FHL2 was revealed in SED rats. These results suggest that the mechanical impacts generated during high-intensity interval running activate a signaling pathway involving nuclear FHL2, such as that also observed with dexamethasone administration. Consequently, interval running could be proposed as a non-pharmacological strategy to contribute to bone marrow cell osteogenic differentiation.

Funder

French National Centre for Scientific Research

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Muscle LIM Protein in Mechanotransduction Process;International Journal of Molecular Sciences;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3