Self-Assembled Nanomicellar Formulation of Docetaxel as a Potential Breast Cancer Chemotherapeutic System

Author:

Alshamrani MeshalORCID,Ayon Navid J.ORCID,Alsalhi Abdullah,Akinjole Omowumi

Abstract

Docetaxel (DTX) is classified as a class IV drug that exhibits poor aqueous solubility (6–7 µg/mL in water) and permeability (P-glycoprotein substrate). The main objective of this study was to construct, characterize, and evaluate docetaxel loaded nanomicellar formulation in vitro for oral delivery to enhance the absorption and bioavailability of DTX, as well as to circumvent P-gp efflux inhibition. Formulations were prepared with two polymeric surfactants, hydrogenated castor oil-40 (HCO-40) and D-α-Tocopherol polyethylene glycol 1000 succinate (VIT E TPGS) with solvent evaporation technique, and the resulting DTX nanomicellar formulations were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier Transform Infrared Spectroscopy (FT–IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Proton NMR, FT–IR, and XRD data indicated that DTX was completely encapsulated within the hydrophobic core of the nanomicelles in its amorphous state. TEM data revealed a smooth spherical shape of the nanomicellar formulation. The optimized formulation (F-2) possessed a mean diameter of 13.42 nm, a zeta potential of −0.19 mV, with a 99.3% entrapment efficiency. Dilution stability study indicated that nanomicelles were stable up to 100-fold dilution with minimal change in size, poly dispersity index (PDI), and zeta potential. In vitro cytotoxicity study revealed higher anticancer activity of DTX nanomicelles at 5 µM compared to the native drug against breast cancer cell line (MCF-7) cells. The LC–MS data confirmed the chemical stability of DTX within the nanomicelles. In vitro drug release study demonstrated faster dissolution of DTX from the nanomicelles compared to the naked drug. Our experimental results exhibit that nanomicelles could be a drug delivery system of choice to encapsulate drugs with low aqueous solubility and permeability that can preserve the stability of the active constituents to provide anticancer activity.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3