Validation of Intrinsic Left Ventricular Assist Device Data Tracking Algorithm for Early Recognition of Centrifugal Flow Pump Thrombosis

Author:

Gross ChristophORCID,Dimitrov KamenORCID,Riebandt JuliaORCID,Wiedemann DominikORCID,Laufer Günther,Schima Heinrich,Moscato Francesco,Brown Michael C.ORCID,Kadrolkar Abhijit,Stadler Robert W.,Zimpfer DanielORCID,Schlöglhofer ThomasORCID

Abstract

Advanced stage heart failure patients can benefit from the unloading effects of an implantable left ventricular assist device. Despite best clinical practice, LVADs are associated with adverse events, such as pump thrombosis (PT). An adaptive algorithm alerting when an individual’s appropriate levels in pump power uptake are exceeded, such as in the case of PT, can improve therapy of patients implanted with a centrifugal LVAD. We retrospectively studied 75 patients implanted with a centrifugal LVAD in a single center. A previously optimized adaptive pump power-tracking algorithm was compared to clinical best practice and clinically available constant threshold algorithms. Algorithm performances were analyzed in a PT group (n = 16 patients with 30 PT events) and a thoroughly selected control group (n = 59 patients, 34.7 patient years of LVAD data). Comparison of the adaptive power-tracking algorithm with the best performing constant threshold algorithm resulted in sensitivity of 83.3% vs. 86.7% and specificity of 98.9% vs. 95.3%, respectively. The power-tracking algorithm produced one false positive detection every 11.6 patient years and early warnings with a median of 3.6 days prior to PT diagnosis. In conclusion, a retrospective single-center validation study with real-world patient data demonstrated advantageous application of a power-tracking algorithm into LVAD systems and clinical practice.

Funder

Medtronic

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3