Abstract
Artemisia annua L. is a medicinal plant appreciated for the production of artemisinin, a molecule used for malaria treatment. However, the natural concentration of artemisinin in planta is low. Plant nutrition, in particular phosphorus, and arbuscular mycorrhizal (AM) fungi can affect both plant biomass and secondary metabolite production. In this work, A. annua plants were ino- culated or not with the AM fungus Funneliformis mosseae BEG12 and cultivated for 2 months in controlled conditions at three different phosphatic (P) concentrations (32, 96, and 288 µM). Plant growth parameters, leaf photosynthetic pigment concentrations, artemisinin production, and mineral uptake were evaluated. The different P levels significantly affected the plant shoot growth, AM fungal colonization, and mineral acquisition. High P levels negatively influenced mycorrhizal colonization. The artemisinin concentration was inversely correlated to the P level in the substrate. The fungus mainly affected root growth and nutrient uptake and significantly lowered leaf artemisinin concentration. In conclusion, P nutrition can influence plant biomass production and the lowest phosphate level led to the highest artemisinin concentration, irrespective of the plant mineral uptake. Plant responses to AM fungi can be modulated by cost–benefit ratios of the mutualistic exchange between the partners and soil nutrient availability.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Reference107 articles.
1. The Artemisia Genus: A Review on Traditional Uses, Phytochemical Constituents, Pharmacological Properties and Germplasm Conservation
2. Spatial distribution and global potential suitability regions of Artemisia annua;Wang;J. Chin. Med. Mater.,2015
3. Growth and development of Artemisia annua L. on different soil types;Muller;Verh. Ges. Ökol.,1997
4. Artemisia annua - Pharmacology and Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献