Radiomics-Based Artificial Intelligence Differentiation of Neurodegenerative Diseases with Reference to the Volumetry

Author:

Cheung Eva Y. W.ORCID,Chau Anson C. M.ORCID,Tang Fuk Hay,

Abstract

This study aimed to build automated detection models—one by brain regional volume (V-model), and the other by radiomics features of the whole brain (R-model)—to differentiate mild cognitive impairment (MCI) from cognitive normal (CN), and Alzheimer’s Disease (AD) from mild cognitive impairment (MCI). The objectives are to compare the models and identify whether radiomics or volumetry can provide a better prediction for differentiating different types of dementia. Method: 582 MRI T1-weighted images were retrieved from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, which is a multicenter operating open source database for AD. In total, 97 images of AD, 293 images of MCI patient and 192 images of cognitive normal were divided into a training, a validation and a test group at a ratio of 70:15:15. For each T1-weighted image, volumetric segmentation was performed with the image analysis software FreeSurfer, and radiomics features were retrieved by imaging research software 3D slicers. Brain regional volume and radiomics features were used to build the V-model and R-model, respectively, using the random forest algorithm by R. The receiver operating characteristics (ROC) curve of both models were used to evaluate their diagnostic accuracy and reliability to differentiate AD, MCI and CN. Results: To differentiate MCI and CN, both V-model and R-model achieved excellent performance, with an AUC of 0.9992 ± 0.0022 and 0.9850 ± 0.0032, respectively. No significant difference was found between the two AUCs, indicating both models attained similar good performance. In MCI and AD differentiation, the V-model and R-model yielded AUC of 0.9986 ± 0.0013 and 0.9714 ± 0.0175, respectively. The best performance was to differentiate AD from CN, where the V-model and R-model yielded AUC of 0.9994 ± 0.0019 and 0.9830 ± 0.009, respectively. The results suggested that both volumetry and radiomics approaches could be used in differentiating AD, MCI and CN, based on T1 weighted MR images using random forest algorithm successfully. Conclusion: This study showed that the radiomics features from T1-weighted MR images achieved excellence performance in differentiating AD, MCI and CN. Compared to the volumetry method, the accuracy, sensitivity and specificity are slightly lower in using radiomics, but still attained very good and reliable classification of the three stages of neurodegenerations. In view of the convenience and operator independence in feature extraction, radiomics can be a quantitative biomarker to differentiate the disease groups.

Funder

School Research Grant

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3