Lightweight Ghost Enhanced Feature Attention Network: An Efficient Intelligent Fault Diagnosis Method under Various Working Conditions

Author:

Dong Huaihao1ORCID,Zheng Kai1ORCID,Wen Siguo1ORCID,Zhang Zheng2ORCID,Li Yuyang1ORCID,Zhu Bobin3ORCID

Affiliation:

1. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chengdu Tianyou Tangyuan Engineering Testing Consulting Co., Ltd., Chengdu 610056, China

3. School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Recent advancements in applications of deep neural network for bearing fault diagnosis under variable operating conditions have shown promising outcomes. However, these approaches are limited in practical applications due to the complexity of neural networks, which require substantial computational resources, thereby hindering the advancement of automated diagnostic tools. To overcome these limitations, this study introduces a new fault diagnosis framework that incorporates a tri-channel preprocessing module for multidimensional feature extraction, coupled with an innovative diagnostic architecture known as the Lightweight Ghost Enhanced Feature Attention Network (GEFA-Net). This system is adept at identifying rolling bearing faults across diverse operational conditions. The FFE module utilizes advanced techniques such as Fast Fourier Transform (FFT), Frequency Weighted Energy Operator (FWEO), and Signal Envelope Analysis to refine signal processing in complex environments. Concurrently, GEFA-Net employs the Ghost Module and the Efficient Pyramid Squared Attention (EPSA) mechanism, which enhances feature representation and generates additional feature maps through linear operations, thereby reducing computational demands. This methodology not only significantly lowers the parameter count of the model, promoting a more streamlined architectural framework, but also improves diagnostic speed. Additionally, the model exhibits enhanced diagnostic accuracy in challenging conditions through the effective synthesis of local and global data contexts. Experimental validation using datasets from the University of Ottawa and our dataset confirms that the framework not only achieves superior diagnostic accuracy but also reduces computational complexity and accelerates detection processes. These findings highlight the robustness of the framework for bearing fault diagnosis under varying operational conditions, showcasing its broad applicational potential in industrial settings. The parameter count was decreased by 63.74% compared to MobileVit, and the recorded diagnostic accuracies were 98.53% and 99.98% for the respective datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3