Atmospheric PM2.5 Prediction Model Based on Principal Component Analysis and SSA–SVM

Author:

Gong He1234,Guo Jie1,Mu Ye1345ORCID,Guo Ying1345,Hu Tianli1345,Li Shijun26,Luo Tianye1,Sun Yu1345

Affiliation:

1. College of Information Technology, Jilin Agricultural University, Changchun 130118, China

2. College of Information Technology, Wuzhou University, Wuzhou 543003, China

3. Jilin Province Agricultural Internet of Things Technology Collaborative Innovation Center, Changchun 130118, China

4. Jilin Province Intelligent Environmental Engineering Research Center, Changchun 130118, China

5. Jilin Province Colleges and Universities and the 13th Five-Year Engineering Research Center, Changchun 130118, China

6. Guangxi Key Laboratory of Machine Vision and Inteligent Control, Wuzhou 543003, China

Abstract

This paper uses an enhanced sparrow search algorithm (SSA) to optimise the support vector machine (SVM) by considering the emission of air pollution sources as the independent variable. Consequently, it establishes a PM2.5 concentration prediction model to improve the prediction accuracy of fine particulate matter PM2.5 concentration. First, the principal component analysis is applied to extract key variables affecting air quality from high-dimensional air data to train the model while removing unnecessary redundant variables. Adaptive dynamic weight factors are introduced to balance the global and local search capabilities and accelerate the convergence of the SSA. Second, the SSA–SVM prediction model is defined using the optimised SSA to continuously update the network parameters and achieve the rapid prediction of atmospheric PM2.5 concentration. The findings demonstrate that the optimised SSA–SVM prediction method can quickly predict atmospheric PM2.5 concentration, using the cyclic search method for the best solution to update the model, proving the method’s effectiveness. Compared with other methods, this approach has a small prediction error, a high prediction accuracy and better practical value.

Funder

Technology Department of Jilin Province

Science and Technology Bureau of Changchun City

Jilin Provincial Department of Education

Publisher

MDPI AG

Reference52 articles.

1. Stern, A.C. (1977). Air Pollution: The Effects of Air Pollution, Elsevier.

2. Air pollution and health;Brunekreef;Lancet,2002

3. Health effects of fine particulate air pollution: Lines that connect;Chow;J. Air Waste Manag. Assoc.,2006

4. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases;Dominici;JAMA,2006

5. The impact of PM2.5 on the human respiratory system;Xing;J. Thoracic. Dis.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3