Dynamic Response of Bridge–Tunnel Overlapping Structures under High-Speed Railway and Subway Train Loads

Author:

Xu Shuo12,Xu Qiang12ORCID,Zhu Yongquan3ORCID,Guan Zhongzheng12,Wang Zenghui12,Fan Haobo12

Affiliation:

1. Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

With the rapid development of high-speed railroads and subways, there has been an increasing number of bridge–tunnel overlapping structures. To study the dynamic response characteristics of bridge–tunnel structures under the synergistic effects of the vibration generated by high-speed railway and subway trains, the dynamic response characteristics of a bridge–tunnel structure under single-point vibration loading was analyzed by conducting numerical simulations and model tests, with the frequency response function and peak acceleration as the evaluation indices. The dynamic response characteristics of the overlapping structure under moving vibration loads of the high-speed railway and subway trains were further analyzed. The results showed that the dynamic response of the bridge–tunnel overlapping structure increased with the increase in the frequency under the full frequency domain single-point sweep vibration load. The dynamic response of the tunnel hance near the pile foundation side was significantly greater than the vault and invert. Compared with the effect of high-speed train loads alone, the dynamic response of the bridge–tunnel overlapping structure under the synergistic effects of high-speed railways and subways increased significantly and varied at different locations. This investigation provides theoretical support for the design and construction of bridge–tunnel overlapping structures under the synergistic effects of high-speed railways and subways, contributing to improving engineering quality and safety.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Science and Technology Project of Hebei Education Department

Young Elite Scientists Sponsorship Program by CAST

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3