Geospatial Modelling of Watershed Peak Flood Discharge in Selangor, Malaysia

Author:

Cheah RyanORCID,Billa Lawal,Chan AndyORCID,Teo Fang YennORCID,Pradhan BiswajeetORCID,Alamri Abdullah M.

Abstract

Conservative peak flood discharge estimation methods such as the rational method do not take into account the soil infiltration of the precipitation, thus leading to inaccurate estimations of peak discharges during storm events. The accuracy of estimated peak flood discharge is crucial in designing a drainage system that has the capacity to channel runoffs during a storm event, especially cloudbursts and in the analysis of flood prevention and mitigation. The aim of this study was to model the peak flood discharges of each sub-watershed in Selangor using a geographic information system (GIS). The geospatial modelling integrated the watershed terrain model, the developed Soil Conservation Service Curve Cumber (SCS-CN) and precipitation to develop an equation for estimation of peak flood discharge. Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) was used again to simulate the rainfall-runoff based on the Clark-unit hydrograph to validate the modelled estimation of peak flood discharge. The estimated peak flood discharge showed a coefficient of determination, r2 of 0.9445, when compared with the runoff simulation of the Clark-unit hydrograph. Both the results of the geospatial modelling and the developed equation suggest that the peak flood discharge of a sub-watershed during a storm event has a positive relationship with the watershed area, precipitation and Curve Number (CN), which takes into account the soil bulk density and land-use of the studied area, Selangor in Malaysia. The findings of the study present a comparable and holistic approach to the estimation of peak flood discharge in a watershed which can be in the absence of a hydrodynamic simulation model.

Funder

University of Technology Sydney

King Saud University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Rainfall-Runoff Modelling: The Primer;Beven,2012

2. Hydrologic Models;Xu,2002

3. Applied Hydrology;Chow,1988

4. Storage and the Unit Hydrograph;Clark;Proc. Am. Soc. Civ. Eng.,1945

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3