Abstract
The accurate severity classification of a bug report is an important aspect of bug fixing. The bug reports are submitted into the bug tracking system with high speed, and owing to this, bug repository size has been increasing at an enormous rate. This increased bug repository size introduces biases in the bug triage process. Therefore, it is necessary to classify the severity of a bug report to balance the bug triaging process. Previously, many machine learning models were proposed for automation of bug severity classification. The accuracy of these models is not up to the mark because they do not extract the important feature patterns for learning the classifier. This paper proposes a novel deep learning model for multiclass severity classification called Bug Severity classification to address these challenges by using a Convolutional Neural Network and Random forest with Boosting (BCR). This model directly learns the latent and highly representative features. Initially, the natural language techniques preprocess the bug report text, and then n-gram is used to extract the features. Further, the Convolutional Neural Network extracts the important feature patterns of respective severity classes. Lastly, the random forest with boosting classifies the multiple bug severity classes. The average accuracy of the proposed model is 96.34% on multiclass severity of five open source projects. The average F-measures of the proposed BCR and the existing approach were 96.43% and 84.24%, respectively, on binary class severity classification. The results prove that the proposed BCR approach enhances the performance of bug severity classification over the state-of-the-art techniques.
Funder
Korea Institute for Advancement of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference41 articles.
1. Automated bug reporting system with keyword-driven framework;Sharma,2019
2. Effective Bug Processing and Tracking System
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献