Self-Excited Microcantilever with Higher Mode Using Band-Pass Filter

Author:

Hyodo Yuji1ORCID,Yabuno Hiroshi1ORCID

Affiliation:

1. Degrees Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan

Abstract

Microresonators have a variety of scientific and industrial applications. The measurement methods based on the natural frequency shift of a resonator have been studied for a wide range of applications, including the detection of the microscopic mass and measurements of viscosity and stiffness. A higher natural frequency of the resonator realizes an increase in the sensitivity and a higher-frequency response of the sensors. In the present study, by utilizing the resonance of a higher mode, we propose a method to produce the self-excited oscillation with a higher natural frequency without downsizing the resonator. We establish the feedback control signal for the self-excited oscillation using the band-pass filter so that the signal consists of only the frequency corresponding to the desired excitation mode. It results that careful position setting of the sensor for constructing a feedback signal, which is needed in the method based on the mode shape, is not necessary. By the theoretical analysis of the equations governing the dynamics of the resonator coupled with the band-pass filter, it is clarified that the self-excited oscillation is produced with the second mode. Furthermore, the validity of the proposed method is experimentally confirmed by an apparatus using a microcantilever.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3