Abstract
Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18–19.5 °C, at 40 ppt salinity, using white LED light of low (40 μmol photons/m2/s) and high (160 μmol/m2/s) intensity and, additionally, blue, green and red LED light. Yield was highest in high white light in both species (2.15 g dw/L in Phormidium, 1.47 g/L in Cyanothece), followed by green light (1.25 g/L) in Cyanothece and low white and green (1.26–1.33 g/L) in Phormidium. Green light maximized phycocyanin in Phormidium (0.45 mg/mL), while phycoerythrin was enhanced (0.17 mg/mL) by blue light and allophycocyanin by all colors (~0.80 mg/mL). All colors maximized phycocyanin in Cyanothece (~0.32 mg/mL), while phycoerythrin and allophycocyanin peaked under green light (~0.138 and 0.38 mg/mL, respectively). In Phormidium, maximization of chlorophyll-a (9.3 μg/mL) was induced by green light, while total carotenoids and b-carotene (3.05 and 0.89 μg/mL, respectively) by high white light. In Cyanothece, both white light intensities along with green maximized chlorophyll-a (~9 μg/mL) while high white light and green maximized total carotenoids (2.6–3.0 μg/mL). This study strongly indicates that these cyanobacteria can be cultured at the first stage under white light to accumulate sufficient biomass and, subsequently, under colored light for enhancing phycobiliproteins.
Funder
General Secretariat of Research and Technology of the Greek Government
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献