Abstract
Perennial ryegrass (Lolium perenne L.) is an important turfgrass and gramineous forage widely grown in temperate regions around the world. However, its perennial nature leads to the inevitable exposure of perennial ryegrass to various environmental stresses on a seasonal basis and from year to year. Like other plants, perennial ryegrass has evolved sophisticated mechanisms to make appropriate adjustments in growth and development in order to adapt to the stress environment at both the physiological and molecular levels. A thorough understanding of the mechanisms of perennial ryegrass response to abiotic stresses is crucial for obtaining superior stress-tolerant varieties through molecular breeding. Over the past decades, studies of perennial ryegrass at the molecular and genetic levels have revealed a lot of useful information to understand the mechanisms of perennial ryegrass adaptation to an adverse environment. Unfortunately, molecular mechanisms by which perennial ryegrass adapts to abiotic stresses have not been reviewed thus far. In this review, we summarize the recent works on the genetic and molecular mechanisms of perennial ryegrass response to the major abiotic stresses (i.e., drought, salinity, and extreme temperatures) and discuss new directions for future studies. Such knowledge will provide valuable information for molecular breeding in perennial ryegrass to improve stress resistance and promote the sustainability of agriculture and the environment.
Funder
the Natural Science Basic Research Program of Shaanxi Province
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献