Functionalised High-Performance Oxide Ceramics with Bone Morphogenic Protein 2 (BMP-2) Induced Ossification: An In Vivo Study

Author:

Migliorini FilippoORCID,Eschweiler Jörg,Maffulli NicolaORCID,Hildebrand Frank,Schenker Hanno

Abstract

This study investigated the in vivo osseointegration potential of high-performance oxide ceramics (HPOCs) with peptide bone morphogenic protein 2 (BMP-2), comparing them with titanium implants. Histomorphometry was conducted around the distal, proximal, medial, and lateral sides of the implants to quantify the amount of mature and immature ossification within the bone interface. We hypothesised that HPOCs functionalised with BMP-2 promote ossification. HPOCs functionalised with BMP-2 were manufactured at the Department of Dental Materials Science and Biomaterial Research of the RWTH University Aachen, Germany. Histomorphometry was conducted by a professional pathologist in all samples. The region of interest (ROI) represented the percentage of the surrounding area of the implant. The percentages of ROI covered by osteoid implant contact (OIC) and mature bone–implant contact (BIC) were assessed. The surrounding presence of bone resorption, necrosis, and/or inflammation was quantitatively investigated. A total of 36 rabbits were used for the experiments. No bone resorption, necrosis, or inflammation was found in any sample. At the 12-week follow-up, the overall BIC was significantly increased (p < 0.0001). No improvement was evidenced in OIC (p = 0.6). At the 6-week follow-up, the overall OIC was greater in the BMP-2 compared to the titanium group (p = 0.002). The other endpoints of interest evidenced similarity between the two implants at various follow-up time points (p > 0.05). In conclusion, alumina HPOCs functionalised with peptide BMP-2 promote in vivo ossification in a similar fashion to titanium implants.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3