Transcriptome and Metabolome Analysis of Upland Cotton (Gossypium hirsutum) Seed Pretreatment with MgSO4 in Response to Salinity Stress

Author:

Ren Wei,Chen Li,Wang Qian,Ren Yanping

Abstract

Upland cotton (Gossypium hirsutum) is a salt-tolerant crop that can withstand high salinity levels without showing signs of harm to the plant. However, the plant is more prone to salinity stress at the germination stage and a poor germination as well as poor crop stand lead to a weak productivity. It is possible to obtain a comprehensive picture of the cotton seedling germination and establishment against salt stress by examining dynamic changes in the transcriptomic and metabolomic profiles. The reported study employed a pretreatment of cotton seeds by soaking them in 0.2% Magnesium Sulphate (MgSO4) solution at room temperature for 4, 8, and 12 h. The analysis of variance based on the studied traits emergence rate, above and underground plant parts’ fresh weight measured, displayed significant differences of the three treatments compared with the control. A total of 28,801 and 264 differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were discovered to code for biological processes such as response to salt stress, cellular response to salt stress, abscisic acid receptor PYR/PYL, regulation of seed growth and germination, and auxin-activated signaling pathways. A large amount of ethylene-responsive transcription factors (ERF) was identified (1235) as differentially expressed, followed by bHLH (252), WRKY (96), MYB (202), GATA (81), RABA (64), DIVARICATA (28), and MADs-box (26) in treated seedling samples. Functional enrichment analysis revealed the significant roles in the hormones and signal transduction, carbohydrates metabolism, and biosynthesis of amino acids, promoting salt stress tolerance. Our results indicated positive effects of MgSO4 at 4 h treatment on seedling germination and growth, seemingly by activating certain growth-regulating enzymes (auxins, gibberellins, jasmonates, abscisic acid, and salicylic acid) and metabolites (phenolic acids, flavonoids, and akaloids). Such pretreatment of MgSO4 on seeds would be beneficial in future cotton management under saline conditions to enhance good crop stand and productivity.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3